Dal CVA al rischio spread: tra rischio di credito e rischio di mercato

Umberto Cherubini, Università di Bologna Convention ABI, "Basilea III, 2013" Roma, 27-28 giugno 2013

Dal CVA al credit spread

- Fonte di fattori di rischio: devono essere riferiti alla valutazione di mercato (risk-neutral valuation)
- Fattori di rischio: modelli di CVA e credit spread
 - Modello di probabilità di default
 - Modello di recovery
 - Modello di esposizione al rischio
- Fattori di rischio: portafogli di crediti
 - Correlazione (cross-section e temporale)
 - Rischio sistemico e idiosincratico
 - Contagio
- Misure: VaR vs ES

Misure del rischio di credito (risk-neutral)

• La probabilità di *default* risk-neutral, può essere calibrata usando

- Informazione implicita nei prezzi azionari
- Informazione implicita negli asset swap.
- Informazione implicita nei credit spread
- Informazione implicita nei CDS

Modelli del rischio di default

Modelli strutturali

- Il rischio è determinato a partire da un modello della struttura finanziaria e industriale dell' emittente dell' obbligazione (la sua linea di business ed il suo stato patrimoniale)
- Il premio per il rischio è determinato a partire dalla teoria delle opzioni
- Modelli in forma ridotta (intensity based)
 - Il rischio è modellato sulla base di ipotesi statistiche sulle probabilità di *default* ed il tasso di recupero
 - Il premio per il rischio è determinato a partire dalla teoria della struttura a termine

Basilea III CVA

- In generale il CVA è il valore che deve essere detratto dal valore di un titolo per includere il rischio di controparte.
- La formula generale è riportata in Basilea III

$$CVA = LGD \sum_{i=1}^{T} \max \left(0; \exp\left(-\frac{s_{t-1}t_{i-1}}{LGD}\right) - \exp\left(-\frac{s_{t}t_{i}}{LGD}\right) \right) \frac{EE_{i-1}D_{i-1} + EE_{i}D_{i}}{2}$$

Osservazioni

- Il CVA è definito come la protection leg di un Contingent CDS (CDS in cui chi vende protezione paga la perdita su un derivato)
- La formula assume indipendenza tra l'esposizione attesa e il rischio di credito del venditore di protezione: non c'è Wrong Way Risk (WWR)
- In generale, l'esposizione attesa ha la forma di un payoff di un'opzione (opzione ibrida sotto WWR)
- Nel caso in cui l'esposizione attesa sia costante, il CVA è la protection leg di un normale CDS

CVA di un forward (parte lunga)

- Il valore del *pay-off* del contratto *forward* deve tenere conto sia del segno del valore sia dell' evento di *default* della controparte rilevante.
- Dal punto di vista della controparte lunga

$$\begin{aligned} \text{CF}_{A}(T) &= \max[S(T) - F(0), 0](1 - \mathbf{1}_{B}) + \\ &\max[S(T) - F(0), 0] \text{RR}_{B} \mathbf{1}_{B} - \\ &- \max[F(0) - S(T), 0] = \\ &\text{CF}(T) - \text{Lgd}_{B} \mathbf{1}_{B} \text{max}[S(T) - F(0), 0] \end{aligned}$$

CVA di un forward (parte corta)

- Anche per la controparte corta l'evento di *default* è rilevante solo nell'ipotesi in cui il valore del contratto finisca *in-the-money*.
- Dal punto di vista della controparte corta $CF_B(T) = \max[F(0) S(T), 0](1 \mathbf{1}_A) + \\ \max[F(0) S(T), 0]RR_A \mathbf{1}_A \\ \max[S(T) F(0), 0] = \\ CF(T) Lgd_A \mathbf{1}_A \max[F(0) S(T), 0]$

CVA di un forward

- Il rischio di controparte è rappresentato da $E_Q[P(t,T)Lgd_i\mathbf{1}_imax[\omega(S(T)-F(0)),0]]$ con i = A, B e ω = 1(-1) per opzioni call (put)
- Il rischio di controparte è composto da
 - Rischio di tasso.
 - Rischio di mercato del sottostante
 - Rischio di default della controparte
 - Rischio di recovery
- Tutti questi fattori di rischio possono essere correlati tra di loro.

Esposizione di un contratto swap (parte lunga)

Assumiamo che lo scadenzario del contratto swap sia {t₁, t₂,..., t_n} e che il default della controparte che riceve fisso (B) si verifichi tra il tempo t_{j-1} e t_j. In questo caso la perdita per la controparte che paga fisso è pari a

$$\operatorname{Lgd}_{\mathrm{B}} \sum_{i=1}^{\mathrm{n-1}} P(t, t_{i+1}) \max (\operatorname{sr}(t_{j}, t_{n}) - k, 0)$$

dove sr è il tasso swap al tempo t_j e k è il tasso swap originario.

• Si noti che il pay-off è quello di una swaption payer.

Esposizione di un contratto swap (parte corta)

Assumiamo che lo scadenzario del contratto swap sia {t₁, t₂,..., t_n} e che il *default* della controparte che paga fisso (A) si verifichi tra il tempo t_{j-1} e t_j. In questo caso la perdita per la controparte che riceve fisso è pari a


$$\operatorname{Lgd}_{A} \sum_{i=1}^{n-1} P(t, t_{i+1}) \max(k - sr(t_{j}, t_{n}), 0)$$

dove sr è il tasso swap al tempo t_j e k è il tasso swap originario.

• Si noti che il pay-off è quello di una swaption receiver.

Esposizione attesa di un swap

Vulnerable Call Swaptions: Financial Institution Paying Fixed

E l'esposizione attesa di un bond?

- L'esposizione attesa un bond non ha la natura di un'opzione e si può essere tentati di concludere che sia il valore facciale del debito.
- In realtà, poiché ciò che rileva ai fini del rischio CVA-spread è il modo in cui il mercato calcola l'esposizione, la conclusione può non essere così scontata
- La valutazione può essere marcatamente diversa a seconda di come è calcolato il recovery.

Metodi di calcolo del recovery

- Recovery at face value: la percentuale di recupero è rapportata al valore nominale dell'esposizione.
- Recovery at market value: la percentuale di recupero è rapportata al valore di mercato dell' esposizione prima del default
- Recovery at treasury: la percentuale di recupero è rapportata alla somma del valore attuale dei flussi futuri di interessi e capitale che devono ancora essere riscossi al momento del default.

Il caso dell' OPS Argentina

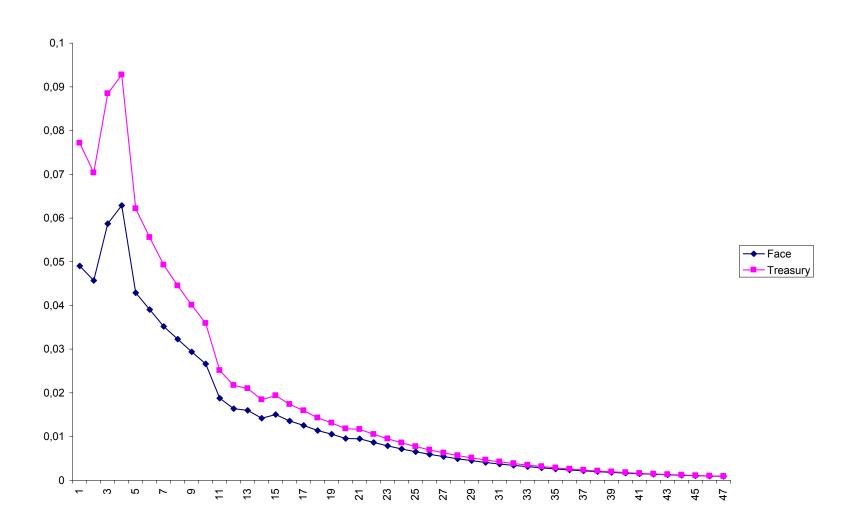
- Nel 2005 l' Argentina offrì un programma di scambio dei bond in default dal 2001 per due tipi di titoli
- Discount bond: maturità 12/2033, cedole 7.82% (capitalizzate fino al 12/2013). Rapporto di scambio 33.70%
- Par bond: maturità 09/2038, cedole più basse con struttura step up (2.26%, 3.38%, 4.74%). Rapporto di scambio: 100%

Descrizione dell' analisi

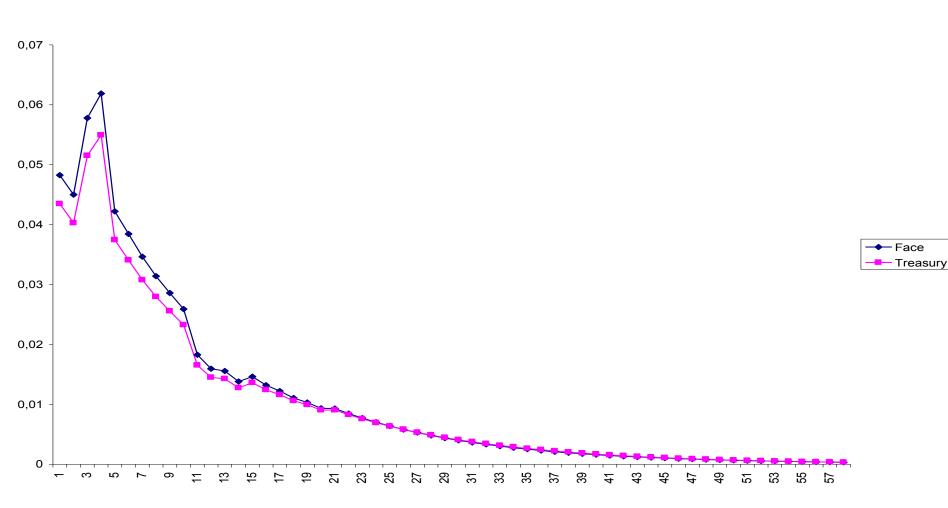
- Estraiamo la struttura a termine della probabilità di default dell' Argentina dai CDS
- Calibriamo il tasso di recupero sul debito argentino sui due bond (par e discount)
- Risultato: con la valutazione dell' esposizione a treasury riproduciamo la stessa valutazione di mercato dei due titoli, cosa che non riusciamo a fare con la valutazione a face value.

Argentina CDS

$$Q(n) = Q(n-1) \left[1 - \frac{CDS(n)}{LGD} \right] - \frac{CDS(n) - CDS(n-1)}{v(0,n)LGD} \sum_{i=1}^{n-1} v(0,i)Q(i-1)$$


Maturity	Swap Rate	Discount	CDS	v(0,i)Q(i-1)	Q(n)	DP(n)	CDP(n)	Intensity
1	1,12	0,989	714,41	0,989	0,881	11,91%	11,907%	12,68%
2	1,40	0,973	823,16	0,8567589	0,726	17,62%	27,432%	19,39%
3	1,72	0,950	836,18	0,6892958	0,619	14,73%	38,124%	15,94%
4	2,03	0,922	841,90	0,5705105	0,529	14,55%	47,128%	15,72%
5	2,31	0,891	845,32	0,470926	0,452	14,52%	54,806%	15,69%
6	2,56	0,857	829,51	0,3874916	0,402	11,13%	59,836%	11,80%
7	2,76	0,823	818,17	0,3306688	0,357	11,18%	64,326%	11,86%
8	2,93	0,789	813,84	0,2815426	0,313	12,39%	68,747%	13,23%
9	3,07	0,756	810,43	0,236256	0,274	12,35%	72,606%	13,18%
10	3,189	0,723	807,79	0,1981686	0,24	12,35%	75,990%	13,19%

Titoli OPS

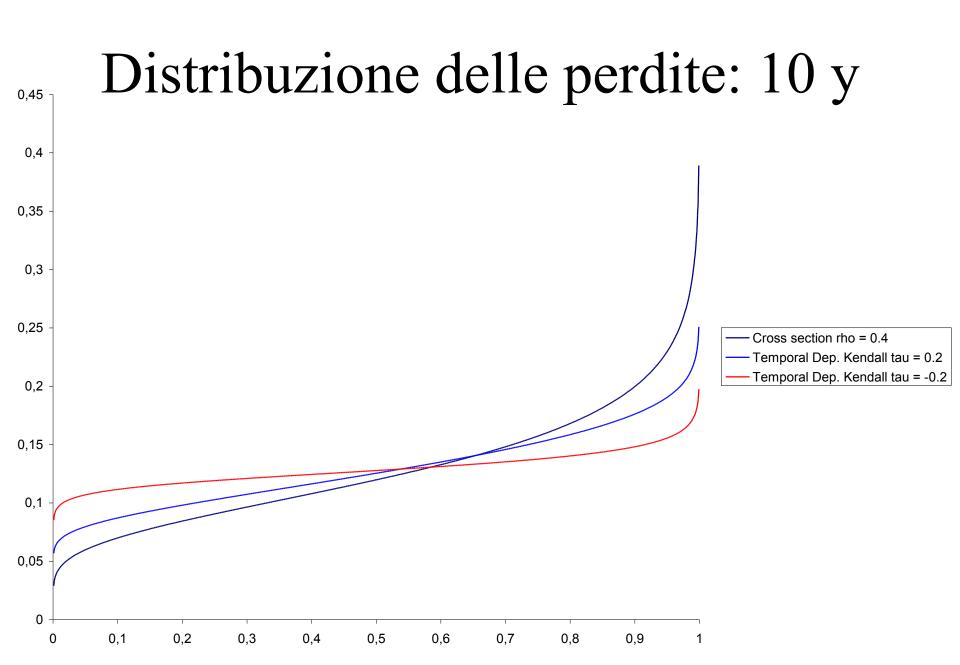

- Tipo: Discount
- Market price: 63.974
- Fair Value: 151.12
- EL (Face): 67.46
- EL (Treasury): 87.22
- Value (Face): 83.66
- Value (Trs): 63.91
- Recovery: 21.92%

- Tipo: Par
- Market price: 31.25
- Fair Value: 91.22
- EL (Face): 64.50
- EL (Treasury): 59.22
- Value (Face): 26.73
- Value (Trs): 32.00
- Recovery: 21.92%

Recovery: PAR

Recovery: DISCOUNT

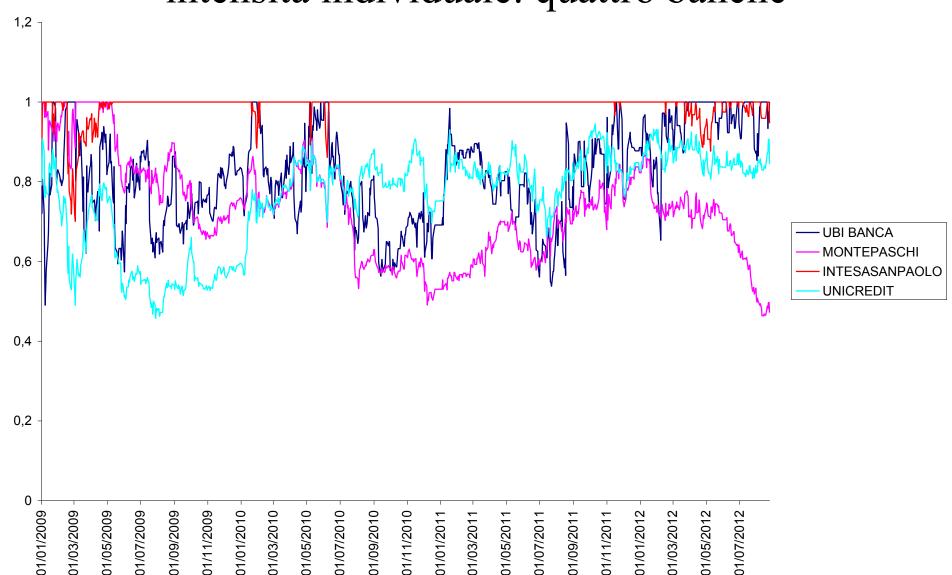
Fattori di rischio di portafogli


- Nel caso di portafogli di titoli defaultable, il rischio spread si arricchisce di una seconda dimensione, che riguarda la correlazione tra i rischi di credito dei diversi elementi del portafoglio.
- Come per ogni esposizione lo spread è l'ammontare di pagamenti periodici richiesti per assicurare un titolo contro perdite derivanti da rischio di credito, lo stesso concetto si applica a perdite su portafogli
- L'equivalente dei CDS in questo caso sono i CDX (i-Traxx). Si tratta dell'unica fonte di informazione disponibile a proposito della struttura di dipendenza percepita dal mercato (risk-neutral).

Modelli del rischio di correlazione

- Modelli strutturali.
 - Modello di Vasicek. Esposizioni omogenee: stessa probabilità di default, stessa correlazione tra gli asset.
 Perr ogni emittente il default è modellato con un modello strutturale.
- Modelli in forma ridotta (intensity-based).
 - Marshall-Olkin. L' intensità di default di ogni emittente può essere scomposta in una parte che riguarda il default comune con altri emittenti e una parte che riguarda una intensità idiosincratica

Quale correlazione?


- Correlazione cross-section. Dipende dalla struttura di correlazione tra le attività finanziarie degli emittenti.
- Correlazione temporale. Determina la probabilità di riportare perdite future date le perdite correnti.
- Entrambi i tipi di correlazione hanno un impatto simile sulla forma della distribuzione di probabilità delle perdite.

Rischio sistemico e contagio

- Il modello di Marshall-Olkin consente di studiare gli effetti di contagio.
- Modello di Marshall-Olkin tradizionale: l' evento "crisi sistemica" è un fattore di rischio indipendente dagli altri.
- Modelli di Marshall-Olkin generalizzati: l'evento crisi sistemica può essere legato da una struttura di dipendenza con il default dei singoli elementi.

Il rapporto tra intensità di default sistemica e intensità individuale: quattro banche

La misura: VaR vs ES

- Una volta costruita la distribuzione di profitti e perdite, il problema è la misura del rischio nelle code.
- VaR vs ES: lungo periodo di prevalenza del VaR nella pratica e di ES nell' accademia.
- Problema del VaR: non è sub-adittivo (ma è un problema?)
- Problema dell' ES: non è "elicitable" (notizia dell' ultim' ora)